Duality without constraint qualification in nonsmooth optimization
نویسنده
چکیده
We are concerned with a nonsmooth multiobjective optimization problem with inequality constraints. In order to obtain our main results, we give the definitions of the generalized convex functions based on the generalized directional derivative. Under the above generalized convexity assumptions, sufficient and necessary conditions for optimality are given without the need of a constraint qualification. Then we formulate the dual problem corresponding to the primal problem, and some duality results are obtained without a constraint qualification.
منابع مشابه
Mixed Duality for Nonsmooth Multiobjective Fractional Programming without a Constraint Qualification
متن کامل
Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملNecessary and Sufficient Constraint Qualification for Surrogate Duality
In mathematical programming, constraint qualifications are essential elements for duality theory. Recently, necessary and sufficient constraint qualifications for Lagrange duality results have been investigated. Also, surrogate duality enables one to replace the problem by a simpler one in which the constraint function is a scalar one. However, as far as we know, a necessary and sufficient cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006